Code No. 40

Total No. of Questions: 40] [Total No. of Printed Pages: 7

March, 2009

ELECTRONICS

Time: 3 Hours 15 Minutes [Max. Marks: 90

Note: i) The question paper has four **Parts A**, **B**, **C** & **D**.

- ii) Question No. ${\bf 23}$ in ${\bf Part}\ {\bf C}$ and Question No. ${\bf 32}$ in ${\bf Part}\ {\bf D}$ are from practicals.
- iii) Read the instructions given for each Part.

PART - A

Note : Answer *all* questions.

 $10 \times 1 = 10$

- 1. Define current gain of CE-amplifier.
- 2. Define CMRR.
- 3. How does the input impedance changes with negative feedback in voltage series feedback amplifier?
- 4. When does a comparator produces zero output, if it is properly biased?
- 5. What is the condition to initiate oscillations in oscillators?
- 6. What is signal fading?
- 7. In a 10 kHz frequency signal, frequency modulates a carrier with a frequency deviation of 40 kHz. What is its modulation index?
- 8. Write the logic symbol of 2-input XNOR-gate.
- 9. What is the output of a D (data or delay) flip-flop when its input is high and clock input is zero?
- 10. Expand MAN with reference to computer networking.

[Turn over

PART - B

Note : Answer any *ten* questions.

 $10 \times 2 = 20$

- 11. Draw the circuit diagram of a logic NOT-gate using transistor.
- 12. In a transistor $I_C = 1$ mA and $I_E = 1.02$ mA. Calculate β .
- 13. What is a phototransistor? Draw its symbol.
- 14. Mention any two advantages of negative feedback.
- 15. For an inverting Op-Amp, if $R_f=100~{\rm k}\Omega$ and $R_1=5~{\rm k}\Omega$ and the input voltage is 400 mV, calculate its output voltage.
- 16. What is Piezoelectric effect?
- 17. Draw the block diagram of communication system.
- 18. If an AM-transmitter produces 80% modulation for a signal amplitude of 2 V, what is the carrier amplitude?
- 19. What is pre-emphasis? Is this process used in FM-receiver?
- 20. Write the truth table of two input DTL-NOR gate.
- 21. Convert (110010101) $_{2}\,$ into gray code.
- 22. Expand the terms GSM and CDMA used in cellular communication system.

PART - C

I. Answer the following question:

 $1 \times 4 = 4$

23. Using the following data, draw the output characteristics of a transistor in CE-mode and also find β of a transistor from the graph. Given $I_B=40~\mu\text{A}$.

V _{CE} (volt)	0	1	2	3	4	5
I _C (mA)	0	4	4.1	4.2	4.3	4.4

Using the following data, calculate the theoretical and experimental value of frequency of RC-Phase shift oscillator.

3

R	С	T	Frequency	
(k Ω)	(μ F)	(ms)	Theoretical	Experimental
1.0	0.1	1.5		
4.7	0.01	0.72		

II. Answer any five questions:

$$5 \times 4 = 20$$

- 24. For the given circuit, calculate
 - i) $\gamma_{in(base)}$
 - ii) γ_o and
 - iii) A_V .

Given
$$\gamma_e = \frac{26 \text{ mV}}{I_E}$$
 , $\beta = 100$, Neglect V_{BE} .

- 25. Explain the working of a CE-Amplifier with a relevant circuit diagram and waveforms.
- 26. Draw the block diagram of voltage series negative feedback amplifier.

 Derive the expression for voltage gain.
- 27. Derive an expression for output voltage of Op-Amp integrator along with the circuit diagram.
- 28. With a circuit diagram, explain the working of Colpitts oscillator.

 Write the expression for frequency of oscillation.
- 29. An AM-transmitter radiates 800 W of power through the antenna at 75% modulation. Calculate the
 - i) carrier power
 - ii) single side band power.
- 30. Draw the block diagram of SHD-AM reciever. Sketch the waveforms at each stage.
- 31. Simplify the following expression using K-map and draw its simplified logic circuit using basic gates :

 $F(A, B, C, D) = \sum m(0, 1, 3, 4, 5, 6, 7, 12, 13, 14) + \sum d(2, 15)$

PART - D

I. Answer the following question :

 $1 \times 6 = 6$

32. Describe an experiment to study two-input Op-Amp adder. Draw the pin diagram of IC 741.

OR

Describe an experiment to realise Basic gates and XNOR-gate using IC-7402 and verify their truth tables. Draw pin configuration of IC-7402.

II. Answer any five questions:

 $5 \times 6 = 30$

2

33. a) What is a cascade amplifier? Mention one application of RC-coupled Amplifier.

Explain the working of a two-stage RC-coupled amplifier with a circuit diagram.

- 34. a) Draw the circuit diagram of CB-configuration of a transistor to study its characteristics. Draw the input characteristics and determine the dynamic input.
 - b) Calculate the upper cut-off frequency and 3 dB gain from the figure below, where f_1 and f_2 are 3 dB frequencies. $\qquad \qquad 2$

Code No. 40

35. a) Obtain the expression for the output voltage of a subtractor with a circuit diagram.

b) Calculate the output voltage of the given circuit. 2

- 36. a) Explain the working of a Wien bridge oscillator with a circuit diagram.
 - b) If k=4 and t=0.2 mm, determine the natural frequency of a crystal.
- 37. Draw the block diagram of FM-transmitter. Briefly explain the functions of each block.
- 38. a) What is a full adder ? Realise a full adder using 3-input XOR-gate and basic gates along with the resulting output expressions.

 Write the truth table of full adder.
 - b) What are universal gates? Mention the types. 2

39. a) Sketch the output waveforms of JK-flip flop across the normal output terminal (ϕ), for the given timing diagram.

b) What is ALU? Explain.

2

c) Write the truth table of a clocked RS-flip flop.

2

40. Draw the block diagram of monochrome TV-transmitter and write the functions of each stage.

[Turn over